
Scheduling Heuristics for Data Requests in an Oversubscribed
Network with Priorities and Deadlines

Mitchell D. Theys*, Noah B. Beck*, H. J. Siegel*,
Michael Jurczyk*, and Min Tan*

^Parallel Processing Laboratory
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907-1285 USA

{theys, noah, hj, min.tan.l}@purdue.edu

^Department of Computer Engineering and Computer Science
University of Missouri - Columbia

Columbia, MO 65211 USA
mjurczyk@cecs.missouri.edu

Draft of Technical Report

September 1998

Abstract
Providing up-to-date information to users is an important data management problem

for a heterogeneous networking environment, where each data storage location and inter-
mediate machine may have specific data available, storage limitations, and communication
links available. Sites in the network request data items and each request has an associated
deadline and priority. This work concentrates on solving a basic version of the data staging
problem in which all parameter values for the communication system and the data request in-
formation represent the best known information collected so far and stay fixed throughout the
scheduling process. Three multiple-source shortest-path algorithm based heuristics for finding
a near-optimal schedule of the communication steps for staging the data are presented. Each
heuristic can be used with each of four cost criteria developed. Thus, twelve implementations
are examined. The performance of the proposed heuristics are evaluated and compared by
simulations. Many of the proposed heuristics perform very well with respect to a loose upper
bound metric.

This research was supported by the DARPA/ISO BADD Program and the Office of Naval Research under
grant number NOOO14-97-1-0804. M.D. Theys was also supported by an Intel Fellowship and an AFCEA
Fellowship. Equipment used in this research was donated by Intel.

pnC QUALITY INSPECTED 4

. 19981102 001
BBTMBUnON BTATEMEMT A

Approyd for p&Mm rsHtamj
Dürtrümtion unlimited

1. Introduction

The DARPA Battlefield Awareness and Data Dissemination (BADD) program [Roc96]
includes designing an information system for forwarding (staging) data to proxy servers prior
to their usage by a local application, using satellite and other communication links. The
network combines terrestrial cable and fiber with commercial VSAT (very small aperture
terminal) internet and commercial broadcast. This provides a unique basis for information
management. It will allow web-based information access and linkage as well as server-to-
server information linkage. The focus is on providing the ability to operate in a server-server-
client environment to optimize information currency for many critical classes of information.

Data staging is an important data management problem that needs to be addressed
by the BADD program. An informal description of an example of the data staging problem
in a military application is as follows. A warfighter is in a remote location with a portable
computer and needs data as input for a program that plans troop movements. The data can
include detailed terrain maps, enemy locations, troop movements, and current weather pre-
dictions. The data will be available from Washington D.C., foreign military bases, and other
data storage locations. Each location may have specific data available, storage limitations,
and communication links. Also, each data request is associated with a specific deadline and
priority. It is assumed that not all requests can be satisfied by their deadline. Data staging
involves positioning data prior to its use in decision making for facilitating a faster access
time when it is requested.

Positioning the data before it is requested can be complicated by the dynamic nature of
data requests and network congestion; the limited storage space at certain sites; the limited
bandwidth of links; the changing availability of links and data; the time constraints of the
needed data; the priority of the needed data; and the determination of where to stage the
data [Sma96]. Also, the associated garbage collection problem (i.e., determining which data
will be deleted or reverse deployed to rear-sites from the forward-deployed units) arises when
existing storage limitations become critical [Roc96, Sma96]. The storage situation becomes
even more difficult when copies of data items are allowed to reside on different machines in
the network so that there are more available sources from which the requesting sites can
obtain certain data [TaS97], and so there is an increased level of fault tolerance, in cases of
links or storage locations going off-line.

The simplified data staging problem addressed here requires a schedule for transmitting
data between pairs of machines in the corresponding communication system for satisfying
as many of the data requests as possible. Each machine in the system can be: (1) a source
machine of initial data items, (2) an intermediate machine for storing data temporarily,
and/or (3) a final destination machine that requests a specific data item.

All parameter values for the communication system and the data request information
(e.g., requesting machines and network configuration) represent the best known information
collected so far and stay fixed throughout the scheduling process. It is assumed that not all
of the requests can be satisfied due to storage capacity and communication constraints. The
model is designed to create a schedule for movement of data from the source of the data to
a "staged" location for the data. It is assumed that the user can easily retrieve the data
from this location. The full description of the model is presented in [TaT98]; portions are
included to aid in the presentation of the heuristics detailed in this paper.

Three multiple-source shortest-path algorithm based heuristics for finding a near-
optimal schedule of the communication steps for staging the data are presented. Each
heuristic can be used with each of four cost criteria developed. Thus, twelve implementa-
tions are examined. The performance of the proposed heuristics are evaluated and compared
by simulations. This research serves as a necessary step toward solving the more realistic and
complicated version of the data staging problem involving fault tolerance, dynamic changes
to the network configuration, ad hoc data requests, sensor-triggered data transfers, etc.

One of the heuristic/cost-criterion pairs was examined in [TaT98]. That investigation
used a simpler model (e.g., there was no garbage collection), and a different set of network
parameters (e.g., the number of machines that can connect to a machine).

Section 2 provides an overview of work that is related to the data staging problem.
Section 3 presents the multiple-source shortest-path algorithm based heuristics for finding a
near-optimal schedule of the communication steps for data staging. These heuristics adopt
the simplified view of the data staging problem described by the mathematical model. A
simulation study is discussed in Section 4, which evaluates the performance of the proposed
heuristics outlined in Section 3. A BADD-like network environment has been used in devel-
oping the parameters for conducting this simulation study.

2. Related Work

To the best of the authors' knowledge, there is currently no other work presented in the
open literature that addresses the data staging problem, designs a mathematical model to
quantify it, or presents a heuristic for solving it. A problem that is, at a high level, remotely
similar to data staging is the facility location problem [HuM89] in management science
and operations research. Under the context of the construction of several new production
facilities, a manufacturing firm needs to arrange the locations of the facilities and plants
effectively, such that the total cost of transporting individual components from the inventory
facilities to the manufacturing plants for assembly is minimized. It is required that the
firm makes several interrelated decisions: how large and where should the plants be, what
production method should be used, and where should the facilities be located? If an analogy
is made between (1) the plants and the destination machines that make the data requests, (2)
the individual manufacturing components and the requested data elements to be transferred,
and (3) the production facilities and the source locations of requested data, then at a high
level the facility location problem has features similar to those of the data staging problem
(e.g., the use of a graph-based method to reduce the facility location problem to a shortest-
path or minimum spanning tree problem).

However, when examining the relationship between the facility location problem and
the data staging problem carefully, there are significant differences. First, each component
that a plant requests is usually not associated with a prioritizing scheme, while in the data
staging problem each data request has a priority. Also, each component request from a
plant commonly does not have a corresponding deadline related factor, while in the data
staging problem each data request has a deadline. For the data staging problem, the priority
and deadline associated with each data request are the two most important parameters
for formulating the optimization criterion. For example, the minimization of the sum of
the weighted priorities of satisfiable data requests (based on their deadlines) is used as the

optimization criterion in the mathematical model of a basic data staging problem presented
in [TaT98]. But for the facility location problem, in general, researchers adopt optimization
criteria that are related to the physical distances between plants and facilities in either a
continuous or discrete domain without any prioritizing schemes or deadline related factors
(e.g., [ChD81, C0N8O, JoL95, MoC84, Shi77]). Thus, although lessons can be drawn from
the design of algorithms for different versions of the facility location problem, there are
no obvious direct correlations between either the formulations or the potential solutions of
those two problems. In the facility location problem all constraints must be satisfied for the
production to occur. In this research, it is known that not all requests can be satisfied.

Data management problems similar to data staging for the BADD program are studied
for other communication systems. With the increasing popularity of the World Wide Web
(WWW), the National Science Foundation (NSF) recently projected that new techniques for
organizing cache memories and other buffering schemes are necessary to alleviate memory and
network latency and to increase bandwidth [Bes97]. More advanced approaches of directory
services, data replication, application-level naming, and multicasting are being studied to
improve the speed and robustness of the WWW [BaB97]. Evidence has been shown that
several file caches could reduce file transfer traffic, and hence the volume of traffic on the
internet backbone [DaH93]. In addition, schemes for dynamic data replication have been
created for distributed environments with the goal of increasing system performance by
optimizing message traffic in the network [AcZ93]. The study of data staging can potentially
draw lessons from and generate positive input for the active research in these related, but
not directly comparable, areas of study.

Other research exploring heuristics for use in the BADD environment has been per-
formed [LeB97]. This work examines methods for scheduling efficiently the ATM-like chan-
nels of a possible BADD-like environment. It shows that "greedy" heuristics are effective
tools for use in that BADD-like environment and uses a network simulator to corroborate this
statement; however, those heuristics do not consider several parameters considered here, such
as deadlines and starting times. The work here differs from [LeB97] in that: (1) a math-
ematical model has been developed [TaT98], and (2) the collection of heuristics and cost
criteria studied here are based on a different set of assumptions about system structure and
data request characterizations.

3. Data Staging Heuristics

3.1. Introduction

The heuristics for solving the data staging problem are based on Dijkstra's algorithm for
solving the multiple-source shortest-path problem on a weighted and directed graph [CoL90].
Dijkstra's algorithm takes as input a directed graph with weighted edges, and produces as
output the shortest path from a set of machines to every other machine of the graph. More
detailed information about Dijkstra's algorithm can be found in [CoL90]. The model used
for the heuristics and implementation details about the heuristics is presented in Subsection
3.2. Subsections 3.3 through 3.5 present the heuristics that are investigated in this research.
The four cost criteria developed for use with the heuristics are defined in Subsection 3.6. The
mathematical model developed for the simplified data staging problem appears in [TaT98],

where one of the twelve heuristic/cost-criterion pairs was examined using a simpler system
model. Some information from that paper appears in this section as necessary background
for the discussion of the data staging heuristics.

3.2. Heuristic Motivation

All necessary communication steps are scheduled by the data staging heuristics. The
heuristics utilize the following three strategies collectively:

(i) Choose an order of data transfers that results in a set of data items being available
on intermediate machines earlier. This set of data items will be chosen based on some
criterion that will cause the ordering to satisfy more data requests.

(ii) Maximize the sum of the priorities of the potentially satisfiable data requests.

(iii) Consider the urgency of a request as its deadline approaches.

Assume there are m vertices in the graph G corresponding to the m machines in
the network, M[j], 0 < j < m. Suppose further that Vs[f] is the set of source vertices
corresponding to the machines that are the initial locations of the data item S[i]. Let N8[i]
be the number of different machines where a request for S[i] is initiated. Suppose"VD[i] lTthe
set of destination vertices corresponding to the machines that are making data requests for
S[i]. Let the length of a path from a source vertex vs € Vs[i] to a destination vertex vd G VD[i]
be defined as the difference between the time when data item 8[i\ is available on vs and the
earliest possible time data item 8[i) arrives at vd (via the machines and the communication
links along the path). This time can be calculated using the various parameters defined in
the model. With the above defined G, Vs[i\, and VD[i], a separate multiple-source shortest-
path problem is well defined for each requested data item in the context of the data staging
problem.

Dijkstra's algorithm, in general, is applied to a directed graph with weighted edges
and a set of source vertices. The algorithm generates, in general, a shortest path from
some source to every vertex in the network (using the weighted edges). For the heuristics
examined here, Dijkstra's algorithm is executed on the directed network topology graph
with weighted edges for each individual data item. The weights on any edge in the graph
correspond to the communication time required to transfer the particular data item between
the two vertices in the network. The set of source machines corresponds to Vs[i]. The
implementation of Dijkstra's algorithm in the heuristics checks: (1) that all machines have
enough memory capacity, Cap, to temporarily hold the the data item being transferred, (2)
that the communication links are available, and (3) the initial time that the data item is
available on a source. This information is for the shortest-path from some source vertex to
a destination. At the completion of Dijkstra's algorithm, the shortest path from any source
to all vertices in the network is known (clearly VD[i] C all machines). This shortest path
time Ar is a lower bound for the actual transfer time when requests for all data items are
considered collectively.

After applying the multiple-source shortest-path algorithm for each of the p requested
data items S\i] individually, p sets of shortest paths are generated. For the example shown in

Figure 1(a), there are four valid communication steps that can be scheduled (specified by as-
terisks). But different valid communication steps may have conflicting resource requirements
(e.g., machine M[0] cannot send data items S[0] and £[1] to machine M[3] simultaneously
due to a link conflict). Thus, a local optimization criterion is used to select one of the valid
communication steps to be scheduled (refer to Subsection 3.6 for more information).

Readers should notice that it may be impossible to use the individually shortest paths
to all destinations for each data item due to possible communication link and memory space
contention in the network when transferring different data items during the same time in-
terval. Also, a multiple-source shortest-path algorithm for G only attempts to minimize the
time when a given requested data item is obtained by its corresponding requesting locations.
But as clearly stated in Section 1, request deadlines and the priorities of the satisfiable
data requests must be taken into account (as well as the sharing of the memory capacity of
machines and the communication links by multiple data items).

The garbage collection scheme implemented here is now described. Leaving a copy of
S[i] on machine M[r] after it is sent to the next machine on the shortest path allows this
copy to be used as an intermediate copy for forwarding S[i] to some other machines. For the
example communication step of transferring £[0] from M[0] to M[3] shown in Figure 1(a),
by tracing the shortest-paths generated for M[7], M[8], and M[9], the set of intermediate
machines can be determined as {3, 5}. At some time duration, 7, after the last destination
whose shortest path goes through M[r] has received S[i], the available memory capacity
of M[r] is incremented by | S[i] | to simulate the removal of S[i] from its memory. So for
the example, M[3] and M[5] would keep S[i] in their local memory for 7 time units after
the latest deadline among machines M[7], M[8], and M[9]. The data item is kept on the
intermediate machines for this time duration to provide a level of fault tolerance in cases
when communication links or storage locations become unavailable, or the case where a
destination loses its copy of the data.

The next subsections discuss the three heuristics that have been developed. Subsection
3.6 presents background information about the cost criterion components, and details the
four cost criteria used in this research.

3.3. Partial Path Heuristic

The heuristics presented in this section are built upon Dijkstra's multiple-source
shortest-path algorithm. The heuristics iteratively pick which data item to transfer next
based on a cost function. Each iteration of this heuristic involves: (a) performing Dijkstra's
algorithm for each data request individually, (b) for the valid next communication steps, de-
termining the "cost" to transfer a data item to its successor in the shortest path, (c) picking
the lowest cost data request and transferring that data item to the successor machine (mak-
ing this machine an additional source of that data item), (d) updating system parameters
to reflect resources used in (c), and (e) repeating (a) through (d) until there are no more
satisfiable requests in the system. In some cases, Dijkstra's algorithm would not need to be
executed each iteration for a particular data transfer, i.e., if the data transfer did not use
resources needed for any future transfers. This optimization is not yet considered because
this research is not focusing on minimizing the execution time of the heuristics themselves.

This heuristic will schedule the transfer for the single "most important" request that

must be transferred next, based on a cost criterion. The heuristic is called the partial path
heuristic (referred to as partial in Figures 4 through 9) because only one successor machine
in the path is scheduled at each iteration. The various cost criteria examined with this
heuristic are described in Subsection 3.6, and this heuristic is evaluated in Section 4.

3.4. Full Path/One Destination Heuristic

The full path/one destination heuristic produces a communication schedule using fewer
executions of Dijkstra's algorithm than the partial path heuristic. The behavior of the partial
path heuristic showed that if a data item S[i] was selected for scheduling a transfer to its next
intermediate location (a "hop"), in the following iteration, the same requested data item,
S[i], would typically be selected again to schedule its next hop. The full path/one destination
heuristic (referred to as fulLone in Figures 4 through 9) attempted to exploit this trend by
selecting a requested data item with one of the cost criterion discussed in Subsection 3.6 and
scheduling all hops required for the data item to reach one of its final destinations before exe-
cuting Dijkstra's algorithm again. Considering the example communication system in Figure
1(a), data item 5[0] would only be scheduled from M[0] to M[3] before executing Dijkstra's
algorithm again in the partial path heuristic. In the full path/one destination heuristic, data
item £[0] would be scheduled from M[0] to M[9] (a destination) before executing Dijkstra's
algorithm again. This results in reducing the number of executions of Dijkstra's algorithm
by three for this example. A savings proportional to the average length of a data item's
path from a source to a destination is expected from this heuristic. Considering again the
communication system in Figure 1(a), if this heuristic initially schedules the transfer of data
item 8[0] from M[0] to M[9], M[3] and M[5] would become sources for S[0}. In the next
iteration, M[7\ could receive 8[0] from M[5], and M[8] could receive £[0] from M[3], without
haying to schedule a transfer from the original source, M[0]. This heuristic will schedule
the entire path for the single "most important" request that should be transferred next.
The schedules generated by the partial path and the full path/one destination heuristics are
compared in Section 4.

The partial path heuristic may construct a partial path (of many links) that it later
cannot complete (due to network or memory resources being consumed by other requested
data items). However, until this is determined, the part of the path constructed may block the
paths of the other requested data items, causing them to take less optimal paths or causing
them to be deemed unsatisfiable (and removed from consideration). The full path/one
destination heuristic avoids this problem. An advantage the partial path approach does have
over the full path/one destination approach is that it allows the link-by-link assignment of
each virtual link and each machine's memory capacity to be made based on the relative
values of the cost criteria for the data items that may want the resource.

3.5. Full Path/All Destinations Heuristic

The full path/all destinations heuristic builds on the full path/one destination heuristic
and requires fewer executions of Dijkstra's algorithm then the other two heuristics. In the
full path/one destination heuristic, a data item is transferred from a single source to a
single destination, even if there are multiple destinations requesting the same data item.

For the example communication system in Figure 1(a), £[0] is requested by machines M[7],
M[8], and M[9], and the shortest path for these three destinations all originate at machine
M[0] and pass through machine M[3]. In the full path/all destinations heuristic (referred
to as full^all in Figures 4 through 9), the data item £[0] would be scheduled for all three
destinations (machines M[7], M[8], and M[9]) at the same time. By scheduling the path to
multiple destinations three fewer executions of Dijkstra's algorithm are required as compared
to the full path/one destination heuristic. A savings proportional to the average number of
destinations for a data item whose shortest path intermediate machine set share a common
machine is expected. This heuristic will schedule all paths for a single data item that share
the next machine in the path as an intermediate machine. This approach was considered
because it was expected to generate results comparable to the full path one/destination
heuristic, but with a smaller heuristic execution time. The schedules generated by the three
heuristics are compared in in Section 4.

3.6. Cost criteria

Four cost criteria that use "urgency" and "effective priority" have been devised for the
three heuristics presented. Each of these cost criteria was chosen so as to vary the effect
these two parameters will have in determining the next communication step. This subsection
begins by defining "urgency" and "effective priority" and the the four cost criteria used are
then presented.

Suppose Ar[i,j] denotes a lower bound on the time when S[i] is received and available
at its corresponding j-th requesting location (as mentioned in Subsection 3.2) and Rft[iJ]
denotes the finishing time (or deadline) after which the data item 8[j] on its Jfc-th requesting
location is no longer useful. Assume M[r] is the next machine in the shortest path from a
source to the j-th destination to receive data item S[i]. A satisfiability function Sat[i, r](j), is
1, if a request for data item S[i] is scheduled to be received at the j-th requesting destination
before its deadline; and 0, if the request for data item S[i] is scheduled to be received after
the deadline on the j-th requesting destination. Note that if the request cannot be satisfied
using the shortest path, there is no other path that will cause it to be satisfied. The set of
destinations whose shortest paths for data item S[i] all pass through the machine M[r] is
defined as D8[i, r]. As an example of the definition of Sat[i, r](j), consider the shortest paths
generated by selecting first the valid communication step for transferring S[0] from M[0] to
Af[3] in Figure 1(a). For this example we only consider the vertices in D5[i,r\. Suppose
that the request deadlines for 8[0] are as follows (in some abstract time units): M[7], 10;
M[8], 15; and M[9], 5. Suppose further that the shortest path estimate has shown that the
network can deliver 8[0] at time: 12 for Af[7]; 11 for M[8]; and 8 for M[9]. Then, Sat[0,3](0)
= 0, Sat[0,3](l) = 1, and Sat[0,3]{2) = 0

Suppose the priority of each data request is between 0 and P, where P is the highest
priority possible (i.e., a member of the class of most important requests). Priority[j,k]
denotes the priority for the data request for the data item S[j] on its fc-th requesting location.
Let W[i] (0 < i < P) denote the relative weight of the z'-th priority. These weightings
allow system administrators to specify the relative importance of priority a data request
versus priority ß data request, where 0 < a,ß < P. Let Efp[i,j] denote the effective
priority for the data request of 8[i] from its j-th requesting location, where Efp[i, j] =

Sat[i, r](j)*W[Priority[i, j]]. Suppose Urgency[i,j) denotes the urgency for the data request
of 8[i] from its j-tb. requesting location, where Urgency[i, j] = —Sat[i,r](j) * (Rft[i,j] —
ÄT[i,j])i where smaller Urgency[i,j] implies that it is less urgent to transfer 8[i] to the
j-th. requesting location. The unit of measure for the Urgency term is seconds. Suppose
WE > 0 is the relative weight for the effective priority factor and Wu_ > 0 is the relative
weight for the urgency factor in the scheduling. Readers should notice that (a) applying
Dijkstra's algorithm to obtain Ar[i,r] through shortest paths, (b) maximizing Efp[i,j],
and (c) maximizing Urgency[i,j] follow the three strategies for designing data relocation
heuristics recommended in (i), (ii), and (iii), respectively, at the beginning of Subsection
3.2. For the valid communication step for transferring 8[0] from M[0] to M[3] shown in
Figure 1(a), Efp[0,0] = W[Priority[0,0]] and Urgency[0,0] = -(Rft[0,0}- the time 8[0]
is available at M[0]). Four cost functions for transferring the requested data item 8[i] from
machine M[s] to M[r) via an available link are each defined using "urgency" and "effective
priority".

If Sat[i,r](j) is 0 for all r that correspond to valid next machines that receive 8[i] and
the associated values of j, that request receives no resources and the data does not move
from its current locations. The request is not eliminated from the network. Currently the
heuristics are applied to a static system, as this constraint is loosened and a dynamic system
is explored, links might become available that would facilitate the delivery of an otherwise
unsatisfiable request. So requests that are at one point in time unsatisfiable, might become
satisfiable at a later point in time.

The system has the following information: bandwidth available on a link, durations a
link is available, and size of each data item. In the model used here, the time interval a link
is needed to transfer a specific data item 8[i] is determined by dividing the size of the data
item, \8[i] | by the bandwidth available on the link. L[i,j][fc] denotes the fc-th direct virtual
communication link from M[i] to M\j], where each L[i, j][k] is associated with one unique
time frame during which the corresponding physical link is available for communication.

Suppose that the current chosen communication step is to transfer the requested data
item 8[i] from M[s] to M[r]. Before repeating the above heuristics for determining the next
communication step(s), the following information must be updated: the link availability
times for any links that the heuristic has scheduled, the available memory capacity on any
machines that 8[i] has been placed, the sources of 8[i] must now include all machines that 8[i]
has been moved to/through, and the time at which 8[i] can be removed from any intermediate
machines.

The cost criteria are designed so that the next chosen communication step should be
the one that has the smallest associated cost among all valid next communication steps for
transferring all S[i] where 0 < i < p. For the first cost criterion (Cl), the Costi[s,r][iJ][k],
for transferring the requested data item 8[i] from machine M[s] to M[r], via link L[s,r][fc],
for the j-th destination, is defined as:

Costi[s,r][i, j][k] = -WE * Efp[i,j]-Wu* Urgency[i,j].

The rationale for choosing the above cost for local optimization is as follows. First, only a
valid next communication step whose associated Sat[i, r] is not 0 will facilitate satisfying data
request(s). The first term of Co5<i[s,r][i,j][A;] attempts to give preference to a satisfiable
data request with a priority higher than the other requests. Furthermore, in order to satisfy

as many data requests as possible, intuitively it is necessary to transfer a specific data item
to the requesting locations whose deadlines are close to expire. This intuition is captured by
the inclusion of the urgency term. Thus, collectively with the consideration of the priority
of satisfiable data requests and the urgency of those data requests in this local optimization
step, using this cost criterion in the data staging heuristic should generate a near-optimal
communication schedule that reasonably achieves the global optimization criterion.

The second criterion (C2) examines the Cos£2[s,r] [«][£] for transferring the requested
data item 8[i] from machine M[s] to M[r] via link L[s,r][A;]:

Cost2[s,r][i][k] =-WE* Yl Efp[hj] + Wu* min —Urgency[i,j].
jeDS[i,r] ieD*[.\r]

This cost function considers all requests for S[i] whose shortest path passes through machine
M[r] and sums their weighted priorities. Rather than summing all of the urgency terms
for the destinations, the most urgent satisfiable request is added in Cost2. This method of
capturing the urgency is used as a heuristic to maximize the sum of the weighted priorities of
satisfied requests. (If the most urgent request for an item passing through M[r] is satisfied,
it is more likely that all requests for this data item passing through M[r] will be satisfied.)

The Costz[s, r][i][k] for transferring the requested data item 8[i] from machine M[s] to
M[r] via link L[s,r][fc] using the third heuristic (C3) is:

Cost3[s,r][i][k]= J2 Efp[i,j]/Urgency [i,j].
jeDS[i,r]

The third criterion takes the weighted priority for a destination and divides it by the urgency
for this destination, and then sums over all the destinations with satisfiable requests for data
item S[i] on a path through machine M[r\. This cost is a sum of the weighted priorities of
satisfiable requests normalized by the urgency of each request. Note that this heuristic does
not use WE or Wu- This is because the effective priority is divided by the urgency and so
WE divided by Wu acts as a scaling factor that would not affect the relative cost of the
requests. That is, for two data items zi and i2 competing for the use of L[s, r][k], the relative
value of Cost3[s, r][ij][&]/Cos£;y[s, r][i'2][&] will be unchanged by including any given WE to
weight the Efp[i,j] factors and any given Wu to weight the Urgency[i, j] factors.

The Cos£4[s,r][z][A;] for transferring the requested data item S[i] from machine M[s] to
M[r] via link L[s,r][fc] using the third heuristic (C4) is:

CosU[s,r}\i}[k} = -WE* £ Efp[i,j} + Wu* £ -Urgency^ j).
jeDS[i,r] jeDS[i,r]

This last criterion sums the weighted priorities of all satisfiable requests for data item S[i]
on a path through machine M[r] and combines that with the sum of the urgency for those
same satisfiable requests. Comparing Cost2 and Cost4, it should be noted that the urgency
term for each destination whose shortest path shares an intermediate node M[r] is summed
in Cost4, whereas Cost2 simply takes the minimum of the urgency term over this same set
of destinations. The benefit of Cost4 is highlighted by the examining the following two
data items. The first data item, S[i], is requested by four machines that all have identical
priorities, and have an AT that is very close to their deadlines. The second data item, 6\j],

9

is also requested by four destinations that have the same identical priorities, but only one
destination has an AT that is close to its deadline. Cost2 will be unable to differentiate
between these two data requests, but Cost4 will chose to schedule 8[i] before 8[j].

All four of these cost criteria are used in conjunction with the partial path heuristic and
the full path/one destination heuristic. For the füll path/all destinations heuristic, CWX

is not used because it does not capture the fact that a data item can be sent to multiple
destinations.

4. Simulation Study

4.1. Introduction

To perform the simulation study, network topologies and data requests must be gener-
ated, values for WE and Wv must be determined, and other scheduling schemes need to be
created to compare to the heuristics discussed in Sections 3.3 through 3.5. Rather than just
choosing one network topology and set of data requests, 40 test cases are generated because
one cannot accurately reflect the range of possible data requests and network configuration
scenarios with one case. The three heuristics are executed using each of these cases and the
results are averaged. The properties for data requests and the underlying communication
systems are randomly generated with uniform distributions in predefined ranges representing
a subset of the systems in a BADD-like environment. The sources and requesting machines
for all data items are also generated randomly. The test generation program guarantees
that the generated communication system is strongly connected [CoL90], such that there is
a path consisting of unidirectional physical transmission links between any pair of machines
in both directions.

These randomly generated patterns of data requests and the underlying communication
systems are used for three reasons: (1) it is beneficial to obtain cases that can demonstrate
the performance of the heuristics over a broad range of conditions; (2) a generally accepted
set of data staging benchmark tasks does not exist; and (3) it is not clear what characteristics
a "typical" data staging task would exhibit. Determining a representative set of data staging
benchmark tasks remains an unresolved challenge in the research field of data staging and is
outside the scope of this document. As an example of the communication network structure
generated, one sample adjacency matrix is shown in Figure 2. A • at position adj(i,j) in the
matrix represents the fact that a link between machine i and machine j exists, a o means
there is no such link. The links utilized here are unidirectional. This corresponds to some
links being satellite based links. Bidirectional links can be represented as two unidirectional
links. Thus, a link from machine i to machine j does not imply that there is a link from
machine j to machine i, nor does it disallow such a link. Figure 3 shows the initial times that
the links are available before any scheduling of data items occurs. The varying availability
of some links correlates to certain links being satellite based and not always available. Other
links can be reserved for specific functions at certain times, such as teleconferencing, and
unavailable for transferring data items. Not every link shown in Figure 2 is available during
the simulation period shown in Figure 3.

Finding optimal solutions to data staging tasks with realistic parameter values are
intractable problems. Therefore, it is currently impractical to directly compare the quality

10

of the solutions found by the three heuristics with those found by exhaustive searches in which
optimal answers can be obtained by enumerating all the possible schedules of communication
steps. Also, to the best of the authors' knowledge, there is no other work presented in the
open literature that addresses the data staging problem and presents a heuristic for solving
it (based on a similar underlying model). Thus, there is no other heuristic for solving the
same problem with which to make a direct comparison of the heuristics presented in this
document. To aid in the evaluation of these heuristics, two lower bounds (see Subsection
4.2), and two upper bounds (see Subsection 4.4) on the performance of the heuristics are
provided.

4.2. Random Search Based Scheduling

The performance of the three heuristics presented here are compared with two random
search based scheduling procedures. The only difference between the first random procedure
and the partial path heuristic is that, instead of choosing a valid communication step using
a cost function as discussed for the partial path heuristic, the Dijkstra random heuristic
(shown as random_dijkstra in Figures 4 through 9) randomly chooses an arbitrary valid
communication step to schedule. This heuristic is used to show the importance of using a
cost criterion for decision making.

The second random-search based scheduling procedure performs Dijkstra once for each
requested data item, assuming it is the only requested item in the network. Then the paths
through the network are scheduled for each data item, finishing S[i] before S[i + 1] (where
the ordering of the data items is arbitrary). If a conflict arises, e.g., the link a transfer is
attempting.to schedule is no longer available, the request is dropped and not satisfied. This
approach is referred to as single Dijkstra random (shown as single.dij.random in Figures
4 through 9) because Dijkstra's algorithm is only executed once for each data item. This
random based method is used to present that executing Dijkstra's algorithm again, with
updated communication system information is advantageous.

4.3. Parameters Used in Experiments

Creating the properties of a network structure that are expected to occur in the field is
a difficult endeavor. The parameters used were chosen to reflect a representative subset of a
BADD-like environment. The number of machines in the communication system is between
ten and twelve. Each machine has between 10MB to 20GB memory storage capacity. The
outbound degree of a machine M[i] (i.e., the number of machines that M[i] can transfer
data items to directly through physical transmission links) is between four and seven. There
are at most two physical unidirectional transmission links between any two machines (there
can be none). The adjacency matrix is created by selecting each machine in the network
and randomly determining the outbound degree of the machine to be between the bounds
mentioned above. Once the outbound degree is chosen, the end machines for the links are
randomly generated. The network creation software makes sure that a link does not originate
and end at the same machine.

The total number of data requests is 20 to 40 times the number of machines in the
system. The sources and destinations for a data item are randomly selected from the set

11

of machines in the system such that: (1) there are at most five sources, (2) there are at
most five destinations, and (3) a destination for a data item is not also a source of the same
data item. Each data item size ranges from 10KB to 100MB. The simulations that were
performed utilized two different priority weightings. The first used a weighting of 1, 5, and
10 for low, medium, and high priority requests, and the second used a weighting of 1, 10,
and 100 for low, medium, and high priority requests. Each data item a destination requests
has an associated priority; therefore, two destinations that request the same data item may
have differing priorities for that data item.

The bandwidth of each physical transmission link is between 10Kbit/sec and
1.5Mbit/sec. The link availability times were generated as follows. First, a duration for
a particular virtual communication link between two machines was chosen from the set {30
minutes, 1 hour, 2 hours, 4 hours}. The percentage of the day (24 hours) that this link is
available is then chosen between 50 and 100 percent of the day, in increments of 10 percent.
The number of virtual communication links is then determined by taking the time the link
is available during the day (percentage available * 24 hours) and dividing by the duration
of the virtual link chosen above. The unavailable time between virtual links is randomly
chosen such that: (1) no two virtual links for the same physical link overlap in time, (2) the
percentage of the day the physical link is available is as chosen above, and (3) the number of
virtual links is as calculated above. The starting time for a data item is sometime between 0
and 60 minutes (0 signifying some start time of the scheduling period, such as midnight or 6
a.m.). The deadline for the data item is 15 to 60 minutes after the available time. Thus, the
effective duration of the simulation is two hours. The time duration parameter for garbage
collection, 7, was set to six minutes. Thus, a particular machine M[r) will keep a data item
in its local memory for six minutes after all destinations, whose shortest path used Af[r],
have received 5[i\. These parameters were used as they capture the information about the
network that is necessary to show the functionality of the heuristic over a variety of network
configurations.

Let the E-U ratio be WE/Wu. As shown by the cost functions introduced in Subsection
4.4, the E-U ratio may affect the performance of the cost criterion (Costu Cost2, and Cost4).
Figure 4 shows the performance of the best heuristic/cost-criterion pairings examined. It
can be seen from the figure how the E-U ratio affects the performance of the heuristics. All
data points are the average of 40 randomly generated test cases.

4.4. Evaluation of Simulations

The results shown in Figures 4 through 7 are for the 1, 10, 100 weighting scheme. The
results of the 1, 5, 10 weighting are similar and are not shown here. In the interval from
-3 to 5, the horizontal axis contains the %10 of the E-U ratio. The points inf and -inf
are the two extremes where inf only considers the effective priority term, while -inf only
considers the urgency term.

Figure 4 shows the performance of the best cost criterion for each of the heuristics,
which happens to be Cost4, and the bounds used in the experiments. The upper bound is
the total weighted sum of the priorities of all requests in the system. The loose upper bound
represents those requests that could be satisfied if they were the only requests in the system
(shown as upper bound and possible_satisfy in Figure 4). Note that this line is not equal to

12

the upper bound, because some requests cannot be satisfied due to lack of link bandwidth
and/or machine storage. The lower bounds show the single Dijkstra random and the Dijkstra
random heuristics performance. The single Dijkstra random performs poorly compared to
the non-random heuristics and the Dijkstra random heuristic.

The performance of the partial path heuristic is shown in Figure 5, the full path/one
destination heuristic in Figure 6, and the full path/all destinations heuristic in Figure 7.
These graphs highlight the performance of the four cost criteria for each of the heuristics
implemented. For the best performing E-U ratio, for each of the heuristic/cost-criterion pairs,
the average number of links a satisfied data item traverses from a source to a destination
was measured in the range 1.5 to 1.6. All potentially satisfiable data items have an average
path length that is also in the above range. The maximum path length taken by a satisfied
data item was measured as nine.

The various heuristics also have differing execution times. Figure 8 shows how the
average execution time varies for the three heuristics examined here as well as the Dijk-
stra/random heuristic. The full path/all destination heuristic requires the least amount of
time to achieve its best performance, while Dijkstra/random requires the most time. The
random Dijkstra heuristic execution time is larger than the cost-based heuristics because the
random Dijkstra heuristic will transfer data items that cannot possibly satisfy the associ-
ated deadlines, whereas the cost-based heuristics will not transfer such data items. The best
performing heuristic, as can be seen in Figure 4, is the full path/one destination heuristic
which has an execution time between these two extremes.

The last figure, Figure 9, shows the comparison between the two priority weighting
schemes for the best combination of heuristic and cost criterion. It can be seen that the 1,
10, 100 weighting satisfies more higher priority requests and fewer medium and low priority
requests than the 1, 5, 10 weighting scheme. This is as desired; if a high priority request being
satisfied is equivalent to satisfying ten medium priority requests, one would satisfy more of
the high priority requests than when the high priority request being satisfied is equivalent
to satisfying two medium priority requests. The combination of Costu the partial path
heuristic, and an E-U ratio of inf has the property that all high priority requests would be
considered before any medium priority requests, which would be considered before any low
priority requests. In this case, it was expected that more high priority requests would be
satisfied than shown by the results in Figure 9 because these high priority requests would
have the first chance of using the network. This was not shown in the results. Instead fewer
high priority requests were satisfied. This is attributed to the fact that when the local cost
criterion has a tie, the first data item that resulted in that cost is transferred. This transfer
could require large amounts of bandwidth and delay other more urgent high priority requests
from being transferred.

5. Conclusions

Data staging is an important data management issue for information systems. It ad-
dresses the issues of distributing and storing over numerous geographically dispersed loca-
tions both repository data and continually generated data. When certain data with their
corresponding priorities need to be collected together at a site with limited storage capacities
in a timely fashion, a heuristic must be devised to schedule the necessary communication

13

steps efficiently. Because each heuristic/cost-criterion pair has advantages, the pair that
performs best may differ depending on the way in which system parameters are gener-
ated (i.e., the underlying assumptions about the actual environment where the scheduler
heuristic/cost-criterion pair will be deployed).

Three heuristics and four cost criteria have been introduced to solve a simplified version
of the data staging problem. Ten of the twelve possible combinations have been first explored
in this paper. The eleventh was explored in [TaT98] utilizing a simpler network model. The
network model used here has been modified from [TaT98] to allow a more realistic version of
garbage collection to be implemented and to have various network parameters more closely
match a BADD-like environment. The twelfth heuristic/cost-criterion (the full path/all
destinations and Cost]) did not make sense and was not examined in this research.

The performance of eleven heuristic/cost-criterion pairs were shown, and compared to
upper and lower bounds. Each heuristic and cost criterion had advantages. The results
presented show that for the system parameters considered, the combination of the Cost4

and the full path/one destination heuristic performed the best, when using the metric of
weighted sum of priorities satisfied. If one was more concerned with execution time, the full
path/all destinations heuristic results in a comparable weighted sum of priorities satisfied
with a faster, execution time. Future work will explore varying the congestion of the network
and additional priority weighting schemes to examine how the heuristics perform.

14

6. Acknowledgments

The author's would like to thank Bob Beaton, Surja Chatterjea, Bob Douglas, and Joe
Rockmore for their comments and suggestions.

7. References

[AcZ93] S. Acharya and S. B. Zdonik, "An efficient scheme for dynamic data replica-
tion," Tech. Report CS-93-43, Dept. of Computer Science, Brown Univ., 1993,
25 pp.

[BaB97] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, "Enhancing the
web's infrastructure: From caching to replication," IEEE Internet Computing,
Vol. 1, No. 2, March-April 1997, pp. 18-27.

[Bes97] A. Bestavros, "WWW traffic reduction and load balancing through server-
based caching," IEEE Concurrency, Vol. 5, No. 1, January-March 1997, pp.
56-67.

[ChD81] R. Chandrasekaran and A. Dauchety, "Location on tree networks: P-centre
and n-dispersion problems," Mathematics of Operations Research, Vol. 6, No.
1, February 1981, pp. 50-57.

[CoL90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, MA, 1990.

[C0N8O] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey, "Worst-case and proba-
bilistic analysis of algorithms for a location problem," Operations Research,
Vol. 28, No. 4, July-August 1980, pp. 847-858.

[DaH93] P. Danzig, R. Hall, and M. Schwartz, "A case for caching file objects inside
internetworks," Tech. Report CU-CS-642-93, Computer Science Dept., Univ.
of Colorado, 1993, 15 pp.

[HuM89] A. P. Hurter and J. S. Martinich, Facility Location and The Theory of Produc-
tion, Kluwer Academic Publishers, Norwell, MA, 1989.

[JoL95] P. C. Jones, T. J. Lowe, G. Müller, N. Xu, Y. Ye, and J. L. Zydiak, "Specially
structured uncapacitated facility location problem," Operations Research, Vol.
43, No. 4, July-August 1995, pp. 661-669.

[LeB97] M. J. Lemanski and J. C. Benton, Simulation for SmartNet Scheduling of Asyn-
chronous Transfer Mode Virtual Channels, Master of Science Thesis, Dept. of
Computer Science, Naval Postgraduate School, June 1997 (Advisor: D. Hens-
gen).

[MoC84] I. D. Moon and S. S. Chaudhry, "An analysis of network location problems
with distance constraints," Management Science, Vol. 30, No. 3, March 1984,
pp. 290-307.

[Roc96] A. J. Rockmore, "BADD functional description," Internal DARPA Memo,
February 1996.

[Sma96] SmartNet/Heterogeneous Computing Team, "BC2A/TACITUS/BADD inte-
gration plan," Internal Report, August 1996.

15

[Shi77] D. R. Shier, "A min-max theorem for p-center problems on a tree," Trans-
portation Science, Vol. 11, No. 3, August 1977, pp. 243-252.

[TaS97] M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li, "Minimizing the application
execution time through scheduling of subtasks and communication traffic in a
heterogeneous computing system," IEEE Trans, on Parallel and Distributed
Systems, Vol. 8, No. 8, August 1997, pp. 857-871.

[TaT98] M. Tan, M. D. Theys, H. J. Siegel, N. B. Beck, and M. Jurczyk, "A mathemati-
cal model, heuristic, and simulation study for a basic data staging problem in a
heterogeneous networking environment," Proceedings of the 7th Heterogeneous
Computing Workshop (HCW'98) , Mar. 1998, pp. 115-129.

Source[0,0] Source[0, 1] Source[1,0]

Request[0,0] Request[0, 1] Request[0, 2] Request[0,3]

5[0]

(a)

Request 1,0 j R equest[1, 1]

8[1]

(b)

Figure 1: An example communication system that requests (a)£[0] and (b)J[l].
Source[i,j] denotes the j-th. initial source location of the data item
8[i], Request[i,j] denotes the machine from which the j-th request for
data item S[i] originates.

16

/OIOIOIOO«t\

ODIOMOtIO

lOOOIIOOOt

OltOtOOItl

IOIOOOIOM

OIMOOOMO

• IOOMOOII

ItllOOOOM

OOMOOIOOO

y OOMHOOOO/

Figure 2: An example adjacency matrix for the networks used.

17

source
10 ->5
10 -» 3
10-5-6
10-+4
9 ->• 7
9 -» 3
9 -> 4
8 -> 3
8 ->• 9
8 -»■ 4
8 -» 1
7 -> 6
7 -» 10
7 ->• 9
7 -» 5
6 -> 3
6 -> 4
6 -»■ 8
5 ->• 1
5 -» 9
5 -*■ 7
5 ->• 3
5 -* 10
4 -» 9
4 ->• 10
4 -> 3
3 ->• 1
2 ->■ 3
2 ->• 8
2 ->■ 6
2 -»• 9
1 -» 9
1 ->■ 4

dest.

1
time (hours)

Figure 3: An example of the initial link availability for the networks used.

18

35000 T

30000

!§ 25000

•S 20000
■c o
•c a

g 15000
3

§ 10000
H

5000 +

-inf

-»-•fuIl_all_C4

-■— possible_satisfy

0 1 2

log 10 of E-U ratio

inf

-fulI_one_C4

- random_Dijkstra

partiaI_C4

■ singIe_Dij_random

-upper bound

Figure 4: Comparison of the heuristics best cost criterion performance.

24000

22000

~ 20000

•a
•c
'I 18000

14000-■

12000

-inf -3 -10 12 3

log 10 of E-U ratio

inf

-partial_Cl - partial_C2 -*- partial_C3 -partial_C4

Figure 5: The partial path heuristic results.

19

24000 T

22000

20000

■g. 18000

I 16000

14000

12000

-inf -3 0 1 2

log 10 of E-U ratio

inf

-fulLone Cl -full_one_C2 -full_one_C3 -full one C4

Figure 6: The full path/one destination heuristic results.

24000

22000

■a 20000

? 16000

14000

12000

-inf 0 1 2

log 10 of E-U ratio

inf

-full_all_C2 -full_aIl_C3 -full_all_C4

Figure 7: The full path/all destinations heuristic results.

20

180

160

140

120
■a
§
§ 100 -■

e 80
o ■a s

i 60

40

20-

01

mfull_alLC4 Bfull_one C4 Hpartial_C4 □ random_Dij kstra

Figure 8: A comparison of average execution times.

450

l_5_10
partial_c4

priority weights, heuristic, and cost criterion

1JOJO0
partial_c4

Dlow a medium Shigh

Figure 9: A comparison of the best heuristic/cost criterion combination using
different priority weighting terms.

21

